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Solutions

1. Note that 2009 = 72 · 41. Therefore, 41 must divide n2(n − 1), which implies that 41 is a
factor of either n or n− 1. In particular, n ≥ 41. For n = 41, neither n nor n− 1 is divisible
by 7, so this is not a solution. For n = 42, however, n−1 = 41, and n2 is divisible by 72 since

n is divisible by 7. Therefore, n = 42 has the desired property, and it is the smallest possible

solution.
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Solution 1: Let M be the centre of the rectangle and F the reflection of E with respect to

M. We show that ABECDF is a regular hexagon, from which it follows immediately that the

ratio is
√
3.

By the conditions of the problem, we have AB = BE (reflection) and BE = EC (given), so

that

AB = BE = EC = CD = DF = FA

by symmetry. Now note that ∠BAD = ∠BED = 90o (by the construction of E), which implies

that A,B, E,D lie on a circle with diameter BD, i.e. the circumcircle of ABCD. By symmetry,

F lies on the circumcircle as well. Hence, ABECDF must be a regular hexagon.

Solution 2: Note that ∠AEB = ∠EAB (definition of E) = ∠ADB (similar triangles). Hence,

ABED is a cyclic quadrilateral, and we can argue as in the previous solution.

Solution 3: Since BM = BD is the perpendicular bisector of AE, we have

ME =MA =MB =MC =MD,

and we can conclude again that A,B, E,C,D, F lie on a circle. Now continue as in Solution 1.

Solution 4: The quadrilateral ABEM is a kite (since the diagonals are perpendicular and

AB = BE), and since AB and ME are parallel, it is a rhombus. Since also AM = BM, ABM

is an equilateral triangle (and so is BEM). It follows immediately that the ratio of the sides

of the rectangle is
√
3.
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Solution 5: Coordinate geometry leads to the correct result as well. Take A = (0, 0), B =

(a, 0), C = (a, b) and D = (0, b). Then, the coordinates of E are found to be
(
2ab2

a2+b2
, 2a

2b
a2+b2

)
.

The condition EB = EC yields the equation

2a2b

a2 + b2
=
b

2
,

which can be reduced to 3a2 = b2 or b
a
=
√
3.

3. Solution 1: The sum of the numbers is 1 + 2 + · · · + 10 = 55; each number contributes to
three of the new numbers, so the total of the new numbers is 3 · 55 = 165. Assume that none
of the new numbers is greater than 17. If more than five of the new numbers are equal to 17,

then there are two neighbours with the same new numbers; suppose they sit on seats x and

x + 1. This implies that the girls in position x− 1 and x+ 2 (possibly taken modulo 10) had

the same old number, which is impossible.

Therefore, there are not more than five girls whose new number is 17, and the sum of all

the new numbers is at most 5 · 16 + 5 · 17 = 5 · 33 = 165. Since equality holds, there are

precisely five girls whose new number is 16, and five girls whose new number is 17. By the

above argument, the numbers of girls who sit next to each other must be distinct, and so they

must form a 16—17—16. . . pattern. Consider two girls on seats x and x + 1 again. Their new

numbers are 16 and 17, which shows that the old numbers of the girls in position x − 1 and

x + 2 differ by exactly 1 (and this holds for any x!). If y is the position of the girl whose old

number was 1, then this argument shows that the girls in positions y− 3 and y+ 3 are either

0 (which is impossible) or 2. But there was only one girl who got number 2, and so we finally

arrive at a contradiction.

Solution 2: (by Desi Nikolov) Divide the nine girls with numbers 2 to 10 into three groups of

three: the three girls to the left of no 1, the three girls to the right of no 1, and the three girls

opposite no 1. The total sum of their numbers is 54, so the sum of at least one group must

be at least 18. Therefore the new number of the girl in the middle of that group is at least 18.

4. Put subscripts on P, S, T to indicate their dependence on n. Then

T1 − S1 − 2 + 2P1 = 1/x1 − 2+ x1 = (1/x1 − 1)(1− x1) > 0.

This gives the base case for an induction proof. For the induction step,

Tn − Sn − 2+ 2Pn = (Tn−1 − Sn−1 − 2+ 2Pn−1) +
1

xn
− xn − 2(1− xn)Pn−1

>
1

xn
− xn − 2(1 − xn)

= (1/xn − 1)(1 − xn) > 0.

5. Observe that the sum of the positions of all the pebbles remains constant (and thus equal to

2009) throughout the process, since one of the positions increases by 1 while another decreases

by 1 at each step. Therefore, no pebble can ever be placed in a hole with a label greater than

2009, implying that there is only a finite number of possible positions. Furthermore, no position
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can be repeated: assume that the same position occurs twice, and let ℓ be the largest position

of a hole from which pebbles have been removed between the two occurrences of the position.

Then, the number of pebbles in hole ℓ + 1 must have increased, an obvious contradiction.

Hence, the process terminates. At the end, all holes except for hole 0 are either empty or

contain exactly one pebble. Let k be the largest number of a nonempty hole at the end of

the process, and let ℓ < k be the smallest position of an empty hole (if any). At some step,

pebbles must have been removed from hole ℓ (otherwise, there cannot be any pebbles in higher

positions). Suppose step x is the last of these steps; no pebble may have been removed from

hole ℓ + 1 after step x (since hole ℓ is empty at the end). Thus, this hole was empty before

step x. Now assume that step y was the last step at which pebbles were removed from hole

ℓ+ 1, and repeat the argument. This shows that holes ℓ+ 1, ℓ+ 2, . . . , k all contain a pebble

at the end of the process.

Therefore, there are only two possibilities:

• Holes 1, 2, . . . , k all contain exactly one pebble, hole 0 contains 2009 − k pebbles. The
sum of all the positions is thus 1+ 2 + · · · + k = k(k+1)

2
.

• Holes 1, 2, . . . , k all contain exactly one pebble, except for the empty hole ℓ, and hole 0
contains 2010− k pebbles. The sum of all the positions is k(k+1)

2
− ℓ.

Hence, we have 2009 = k(k+1)
2

− ℓ, where 0 ≤ ℓ < k. Since k(k+1)
2

− k =
k(k−1)
2
, this

representation is unique. We have

2009 =
63 · 64
2

− 7,

which implies k = 63 and ℓ = 7. Finally, we find that hole 0 contains 2010 − 63 = 1947

pebbles.

6. Since f(0) = 1
2
f(0), we deduce that f(0) = 0 and f(1

2
) = 1. In the general case, it is useful to

think in terms of the binary representation B2(x) of x.

For 1
2
< x < 1, B2(x) contains at least two 1

′s, and we can express x as x = 1
2
+2−m+2−my,

where m > 1 and 0 � y < 1. Then

f(x) = 1 − 1
2
f(2−m+1 + 2−m+1y) = 1− 2−m+1f(1

2
+ 1
2
y) = 1− 2−m+1 + 2−mf(y).

In particular, when y = 0, we have f(x) = 1 − 2−m. Thus

f(1
2
+ 2−m + 2−my) = f(1

2
+ 2−m) + f(2−my).

By repeating the argument, we obtain: if x = z+2−my, where B2(z) has lengthm and contains

an even number of ones, and 0 � y < 1, then f(x) = f(z) + 2−mf(y) = f(z) + f(2−my).

Assuming for the moment that

0 � f(y) < 2 for rational x (1)

(which we will prove later), we obtain the following procedure for calculating B2(f(x)) from

B2(x) :
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(a) Partition B2(x) into chunks of the form 00...0 and 100...01 (the latter case includes

11), and possibly a final chunk of just a single 1.

(b) Leave the chunks of zeros unchanged and replace the other chunks by 111...10 (this

includes 11→ 10).

(c) If there is a final 1, change the last 0 to 1.

Let the numbers represented by the chunks and their replacements respectively be uj and

f(uj). Then the procedure implements the identity

f(u1 + u2 + · · · + un) = f(u1) + f(u2) + · · · + f(un).

From f(1
2
+ 2−m) = 1− 2−m+1 = 2

3
(1
2
+ 2−m) + 2

3
(1− 2−m+2) it follows that for the nonzero

chunks, f(x) � 2
3
x with equality only for the case 11. Obviously, for the zero chunks f(x) = 2

3
x.

Thus:

f(x) � 2
3
x, with equality if and only if all the ones in B2(x) come in adjacent pairs.

It follows that f(x) + f(1 − x) � 2
3
x+ 2

3
(1 − x) = 2

3
.

We now characterize the cases of equality.

If B2(x) terminates, ending in 11, then B2(1− x) ends in 01, so equality cannot occur.

If B2(x) does not terminate, B2(1 − x) is obtained by complementing the bits of B2(x). It

follows that equality occurs if and only if the ones and the zeros in B2(x) both come in

adjacent pairs. Another way of putting this fact is to say that the base 4 representation B4(x)

is nonterminating and contains only 0’s and 3’s.

An infinite family with this property is xk = 0.00 . . . 34 = 3/(4
k − 1). Since 3 divides 4k − 1,

xk = 1/qk for some odd integer k.

To complete the proof, we need to prove (1). This is clearly true when x = 0, and therefore

also when B2(x) terminates and has an even number of ones. Since for rational x, B2(x)

eventually becomes periodic, we can split B(x) to obtain x = y + 2−mz, where B2(y) has

length m and has an even number of ones, 0 � z < 1, and B2(z) is periodic with period p.

Then z = v + 2−2pz, where B2(v) is just the first 2p bits of B2(z), which must contain an

even number of ones. It follows that f(z) = f(v) + 2−2pf(z), so f(z) = f(v)/(1− 2−2p). That

is to say, B(f(z)) is periodic with period 2p, repeating the bits of B2(f(v)), which gives us

0 � f(z) < 2.
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