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Solutions

1. 20088 = 224× 2518 has 25× 9 = 225 positive divisors, including 20084 =
√
20088. There is a

one-one correspondence between the positive divisors d less than 20084 and those larger than

20084, namely d ↔ 20088

d
. It follows that there are 1

2
(225 − 1) = 112 positive divisors less

than 20084.

2. The vertices of the quadrilateral can be chosen in the xy-plane such that (without loss)

A = (a, 0), B = (b, 0), C = (0, c) and D = (0, d), where 0 < a < b and 0 < d < c.

Then AC · BD > AD · BC is equivalent to (a2 + c2)(b2 + d2) > (a2 + d2)(b2 + c2) (using

Pythagoras), which is equivalent to b2c2 + a2d2 > a2c2 + b2d2, a statement that follows

immediately from the re-arrangement inequality.

3. If one of a, b, c is greater than, or equal to, the sum of the other two, then the inequality

is trivially true, as the left hand side is positive while the right hand side is non-positive.

Obviously, equality is not possible in this case.

So assume that a, b, c are the lengths of the sides of a triangle. Then, using the Ravi-

substitution, there are positive real numbers x, y, z such that a = x + y, c = y + z, b =

z + x. Applying the AMG-inequality three times we get a + b = 2x + y + z � 4(x2yz)1/4,

b + c = x + y + 2z � 4(xyz2)1/4 and c + a = x + 2y + z � 4(xy2z)1/4. Multiplying these

three inequalities together gives

(a + b)(b+ c)(c + a) � 43(x4y4z4)1/4

= 43xyz

= 43
(
a+b−c
2

) (
b+c−a
2

) (
c+a−b
2

)

= 8(a+ b− c)(b+ c− a)(c + a− b).

Equality is obtained if and only if equality holds in all three inequalities, i.e., if and only if

x = y = z. This happens if and only if a = b = c.

4. More generally, let there be n cards in the pack, numbered from 1 to n. Let f(n) denote the

top card before the game starts. It is easy to see that f(n) = (n + 1)/2 if n is odd: The

very first move places card f(n) underneath the bottom card, say g(n). The cards are then

removed from the pack in the order 1, 2, . . . , (n − 1)/2, after which g(n) is now at the top

and f(n) is second from the top. In the next move, g(n) goes underneath the pack, and f(n)

is removed, implying that f(n) = (n+ 1)/2.

Now suppose that n = 2mk, where m > 0 and k is odd. After the first 2m−1k moves, the

cards with numbers 1, 2, . . . , 2m−1k have been removed, and the card that was originally at

the top, i.e. card no. f(n), is again at the top of the remaining pack of cards with numbers

2m−1k+1, 2m−1k+2, . . . , 2m−1k+2m−1k = 2mk, in some order. But this gives the recursion

1



relation f(n) = 2m−1k+ f(2m−1k), and we immediately have

f(2mk) = 2m−1k+ 2m−2k+ · · ·+ k+ f(k)
= (2m − 1)k+ k+1

2
,

i.e., f(n) = n− k−1
2
. Note that this formula also holds for odd n (if we include the possibility

m = 0), since then f(n) = n− n−1
2
= n+1

2
.

To summarize: If n = 2mk, where m � 0 and k is odd, then f(n) = n − k−1
2
.

For n = 2008 = 23 · 251, we have f(2008) = 2008 − 250
2
= 1883.

5. Note that if Â = 90◦, then P = Q, in which case the result follows trivially.

Henceforth, assume that Â �= 90◦. In the figure below, HPAQ is a rectangle, since both HP

and QA are perpendicular to AP, and both HQ and PA are perpendicular to QA. Join M

and N, the points where the circumcircle of HPAQ (with centre O) intersects AB and AC

respectively.
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It follows that MÔP = 2MÂP = 2NÂP = NÔP, and so △MOT ≡ △NOT . This shows

that, in circle AQMHPN, QP is a perpendicular bisector of chordMN, as it goes through the

centre O, and MT = TN. Now since AH is a diameter of this circle, AN̂H = 90◦, showing

that BN is an altitude of △ABC. Similarly, CM is an altitude of △ABC, and hence BMNC is
a cyclic quadrilateral. But then QP is a perpendicular bisector of chordMN of circle BMNC,

so QP extended goes through the centre R of this circle, which is the midpoint of BC.

6. The functions f and g must satisfy

f(a + b) = f(a)g(b) + g(a)f(b) (1)

and g(a + b) = g(a)g(b) − f(a)f(b) (2)

for all a, b ∈ Z. By putting a = b = 0, we obtain

f(0) = 2f(0)g(0) (3)

and g(0) = g(0)2 − f(0)2. (4)

From (3), f(0) = 0, otherwise g(0) /∈ Z. Hence, from (4), g(0) = 0 or g(0) = 1.
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If f(0) = g(0) = 0, then, with a arbitrary and b = 0, we have (from (1) and (2)) that

f(a) = g(a) = 0 for all a ∈ Z.
Henceforth, assume that f(0) = 0 and g(0) = 1. Put

f(−1) = q; g(−1) = p; f(1) = l; g(1) = k.

From (1) and (2) we have, for all a ∈ Z,

f(a+ 1) = kf(a) + lg(a) (5)

g(a+ 1) = kg(a) − lf(a). (6)

For a = −1 this becomes

0 = f(−1+ 1) = lp+ kq (7)

1 = g(−1+ 1) = kp− lq (8)

from which we get

(k2 + l2)q = −l. (9)

By (9), the integer l is a root of qx2 + x+qk2 = 0, implying that the discriminant 1− 4k2q2

is non-negative, i.e., 4k2q2 � 1. So, k and q cannot be both nonzero. Let us now consider

two cases:

1. k �= 0: Then q = 0, hence l = 0, by (9). From (8), k = p = 1 or k = p = −1. Consider

these two subcases separately:

1a: k = p = 1, q = l = 0: From (5) and (6), f(a + 1) = f(a) and g(a + 1) = g(a) for

all a ∈ Z, i.e., both f and g are constant. So f(1) = 0 and g(1) = 1 imply that
f(a) = 0 and g(a) = 1 for all a ∈ Z.

1b: k = p = −1, q = l = 0: From (5) and (6), f(a + 1) = −f(a) = f(a − 1) and

g(a + 1) = −g(a) = g(a − 1) for all a ∈ Z, i.e., both f and g are constant on
the even integers, and also constant on the odd integers. From f(0) = 0, f(1) =

0, g(0) = 1, g(1) = −1 it follows that f(a) = 0 and g(a) = (−1)a for all a ∈ Z.
2. k = 0: Then, by (8), either q = −1 and l = 1, or q = 1 and l = −1. So p = 0, by (7).

Again, consider these two subcases separately:

2a: k = p = 0, q = 1, l = −1: From (5) and (6), f(a + 1) = −g(a) = −f(a − 1) and

g(a + 1) = f(a) = −g(a − 1), i.e., both f and g alternate on the even integers, as

well as on the odd integers. Hence, from f(0) = 0, f(1) = −1, g(0) = 1, g(1) = 0

it follows that f(2a) = 0; f(2a + 1) = (−1)a+1 and g(2a) = (−1)a;g(2a + 1) = 0

for all a ∈ Z.
2b: k = p = 0, q = −1, l = 1: From (5) and (6), f(a + 1) = g(a) = −f(a − 1) and

g(a+ 1) = −f(a) = −g(a− 1), i.e., both f and g alternate on the even integers, as

well as on the odd integers. Hence, from f(0) = 0, f(1) = 1, g(0) = 1, g(1) = 0 it

follows that f(2a) = 0; f(2a+ 1) = (−1)a and g(2a) = (−1)a;g(2a+ 1) = 0 for all

a ∈ Z.
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To summarize, there are five solutions:

1. f(a) = g(a) = 0 for all a ∈ Z.
2. f(a) = 0 and g(a) = 1 for all a ∈ Z.
3. f(a) = 0 and g(a) = (−1)a for all a ∈ Z.
4. f(2a) = 0; f(2a+ 1) = (−1)a+1 and g(2a) = (−1)a; g(2a+ 1) = 0 for all a ∈ Z.
5. f(2a) = 0; f(2a+ 1) = (−1)a and g(2a) = (−1)a; g(2a+ 1) = 0 for all a ∈ Z.

It is easy to check that they all indeed satisfy (1) and (2).
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