

HARMONY SOUTH AFRICAN MATHEMATICS OLYMPIAD

SECOND ROUND 2007 JUNIOR SECTION: GRADES 8 AND 9

SOLUTIONS AND MODEL ANSWERS

NUMBER	POSITION
1	В
2	В
3	А
4	D
5	E
6	В
7	А
8	С
9	D
10	С
11	А
12	В
13	А
14	E
15	E
16	D
17	В
18	С
19	E
20	D

1. B $18 = 2 \times 3^2$ $30 = 2 \times 3 \times 5$ $45 = 3^2 \times 5$

LCM (18, 30, 45) = $2 \times 3^2 \times 5 = 90$

2. **B**

Subtracting multiples of 7 from 29 we obtain 29-28 = 1 (first Thursday) First Saturday is therefore $1 + 2 = 3^{rd}$ Second Saturday is $3 + 7 = 10^{th}$

Construct AE \perp DC. Fill in the angles $\therefore \Delta$ ADE is isosceles with AE = DE But AE = BC = 5 (rectangle AECB) \therefore DE = 5 EC = AB = 10 \therefore y = 5 + 10 = 15

4. D

Sipho's age is a multiple of 3, e.g. 18; 21; 24; 27; 30; 33; 36;etc Pam's age is the sum of the digits of Sipho's age, e.g. 1 + 8 = 9, 2 + 1 = 3, 2 + 4 = 6, 2 + 7 = 9, 3 + 0 = 3, 3 + 3 = 6, etc

Sum of their ages is : Either 48 or 56 or 32 or 36 or 60.

Solution is therefore 27 + (2 + 7) = 36

5. E

$$x = \frac{1}{2} (90^{\circ} - x) + 30^{\circ}$$

$$= 45^{\circ} - \frac{x}{2} + 30^{\circ}$$

$$\frac{3x}{2} = 75^{\circ}$$

$$3x = 150^{\circ}$$

$$x = 50^{\circ}$$

supplement of x is $180^{\circ} - 50^{\circ} = 130^{\circ}$.

6. **B**____

$$\sqrt{xy} = 2 \Rightarrow xy = 4$$

and $\sqrt[3]{xyz} = 6 \Rightarrow xyz = 216$
 $z = \frac{xyz}{xy}$
 $= \frac{216}{4} = 54$

7. **A**

Write out the 2-digit number as 10x+y, such that: 10x+y-(x+y) = 45 x = 5Since y is independent of x it can take on any value from 0 to 9.

There are therefore 10 possible numbers

8. **C**

Say there are *a* five cent coins, *b* ten cent coins and *c* twenty cent coins. Then: 5a + 10b + 20c = 275.....(1) 10a + 20b + 5c = 375....(2)Double each one in (1) 10a + 20b + 40c = 550 10a + 20b + 5c = 375 35c = 175c = 5 D $6^2 + 8^2 = 10^2$ $8^2 + 15^2 = 17^2$ $10^2 + 24^2 = 26^2$ $12^2 + 35^2 = 37^2$ $18^2 + n^2 = x^2$

> Observe pattern: 8 + 7 = 15, 15 + 9 = 24, 24 + 11 = 35, 35 + 13 = 48, 48 + 15 = 63, 63 + 17 = 80

10. С

Suppose there were 7 guests	(1 on e	ach day)				
	Son	Mon	Tue	Wed	Thurs	Fri	Sat
	1	2	3	4	5	6	7
Suppose there were 15	8	9	10	11	12	13	14
	15						

This gives us at least 3 on one day.

For 6 months We have $14 \ge 6 + 1 = 84 + 1$ = 85

11. А

Consider: $x = 1$ (no.)	a+b+c+d = 15	
	Combinations: (2;2;	5;6)
	(2;3;4	4;6)
	(2;3;	5;5)
	(3;3;3	3;6)
	(3;3;4	4;5)
	(4;4;4	4;3)
	(4;4;2	2;5)
Consider: $x = 2$	$\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d} = 10$	(1;1;3;5)
		(1;1;4;4)
		(3;3;3;1)
D 11 1 C 1	10	

Possible number of combinations is 10

9.

12.

В

 $2+4 = 6 = 2 \times 3$ No. of terms x the next number of terms. $2+4+6 = 12 = 3 \times 4$ $2+4+6+8 = 20 = 4 \times 5$ $2+4+6+8+10 = 30 = 5 \times 6$

Therefore
$$2 + 4 + 6 + 8 + 10 + \ldots + 30 = 15 \times 16$$

= 240

13. **A**

Consider the quadrilateral with AB = BC = CD

 $\hat{C} = 60^{\circ} \quad \hat{B} = 100^{\circ}$ Join BD Now triangle BDC is equilateral. So $\hat{B}_2 = 60^{\circ}$ $\therefore \hat{B}_1 = 40^{\circ}$ And BA = BD So $\hat{A} = \hat{D}_1 = 70^{\circ}$ (angle sum of isos triangle) $\therefore \hat{D} = 70^{\circ} + 60^{\circ} = 130^{\circ}$

14. **E**

a = 15 + 5 = 20 b = 20 + 5 = 25 c = 25 + 5 - 30So length is 30 + 25 = 55 and breadth is 25 + 20 = 45. Area is 45 x 55 = 2475

15. **E**

Water + melon = 50kg. Mass of water = 98% of 50 = 49 kg. Mass of the solid matter in the melon = 1 kg. 4% of watermelon represents 1 kg. Therefore new mass of watermelon = $\frac{100}{4}$ x 1 kg = 25kg

16. **D**

Laat: 478 = a 392 = band 263 = c $a - b = 86 = 2 \times 43$ $b - c = 129 = 3 \times 43$ Therefore $263 = 6 \times 43 + 5$ N = 43 P = 5 N - P = 43 - 5= 38 17. **B**

$$3 + \sqrt{27} = 3 + 3\sqrt{3} = 3 + \sqrt{3} + \sqrt{3} + \sqrt{3}$$

$$< 3 + \sqrt{4} + \sqrt{3} + \sqrt{3} = 5 + \sqrt{12}$$

$$\sqrt{48} + \sqrt{3} = \sqrt{16 \times 3} + \sqrt{3} = 4\sqrt{3} + \sqrt{3}$$

$$= 3\sqrt{3} + \sqrt{3} + \sqrt{3} = \sqrt{27} + 2\sqrt{3} = \sqrt{27} + \sqrt{12}$$

$$>\sqrt{27} + \sqrt{9} = 3 + \sqrt{27}$$
also
$$\sqrt{48} + \sqrt{3} = \sqrt{27} + \sqrt{12} > \sqrt{25} + \sqrt{12} = 5 + \sqrt{12}$$

$$\sqrt{78} > \sqrt{75} = 5\sqrt{3} = 4\sqrt{3} + \sqrt{3} = \sqrt{48} + \sqrt{3}$$

$$3 + \sqrt{3} + \sqrt{10} < 3 + \sqrt{3} + \sqrt{12} = 3 + \sqrt{27}$$
so
$$3 + \sqrt{3} + \sqrt{10} < 3 + \sqrt{27} < 5 + \sqrt{12} < \sqrt{48} + \sqrt{3} < \sqrt{78}$$

 $5 + \sqrt{12}$ is the number in the middle

18. **C**

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2		х		х		Х		х		Х		Х		Х		Х		
3			Х			0			Х			0			Х			
4				0				0				Х				0		
5					х					0					0			
6						Х						0						
7							Х							0				
8								х								Х		
9									0									
10										Х	х	Х	Х	Х	Х	0	х	

Number of f = 80 - 8= 72

72 lights will be switched off

19. **E**

Jessie walked $8x \ 80 = 640$ m in 10 min so her speed was 64 m per min With conveyor system she walked 320m at 64m per min which took her 320/64 = 5min, she then took 8 - 5 = 3 min on the conveyor system, The conveyor moves 320m in 3 min which is at a speed of $320/3 = 106 \ 2/3$ m per min. Walking on the conveyor system she takes 5 min plus $320/(106 \ 2/3 \ +64)$ This is approximately 7 min.

20. **D**

The sum of the digits in the answer is: when 9 rows are added 9 x 4+9 = 45

when 18 rows are add	ded $18 \ge 4 + 9 = 81$
27	$27 \times 4 + 9 = 117$
•••••	
63	$63 \ge 4 + 9 = 261$